

Team Members: Jake Shaw, Will Legrand, Edwin Beraud, and Jeff Macauley

Client: Mark Hall

Project Description

- Create a sustainable heating solution for homes on the Navajo and Hopi reservations
- Goal is to cut down the burning of coal and wood finite resources
- Red Feather works in Flagstaff to develop sustainable housing solutions to people on the reservation
- Need to find the right balance between health factors, heating efficiency, cost

Black Box Model

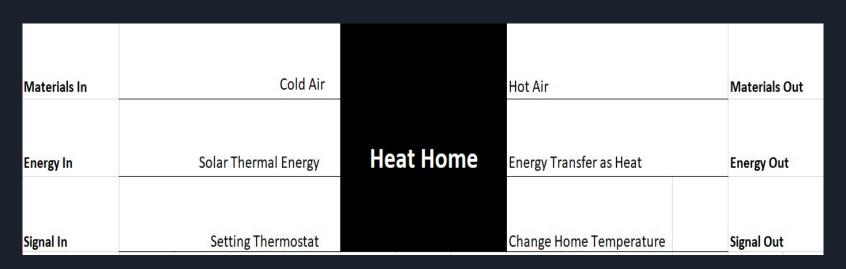


Figure 1: Inputs, outputs, and main function of the design

Functional Decomposition

 Assuming the system consists of a solar furnace, solar PV panel, small fan, and battery system

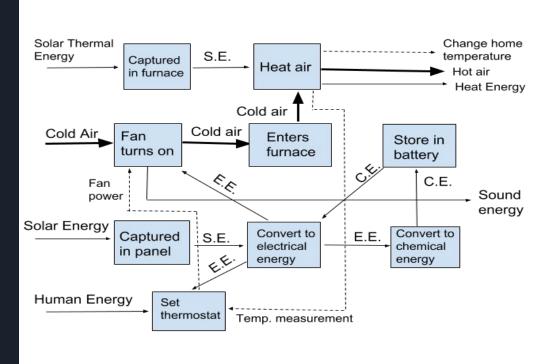


Figure 2: Break down of subfunctions and energy conversions

Concept Generation: First Design

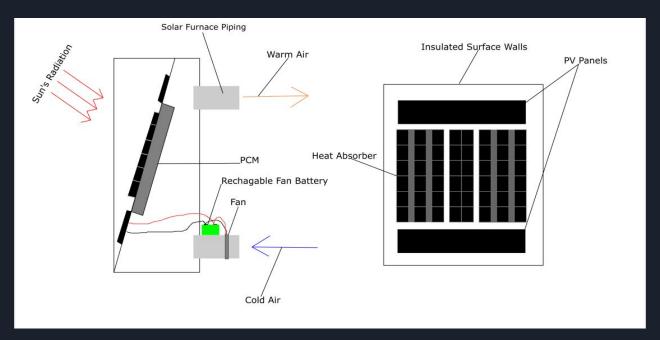


Figure 1: Photovoltaic and Phase Change Material Integrated Solar Furnace

Concept Generation: Selected Design

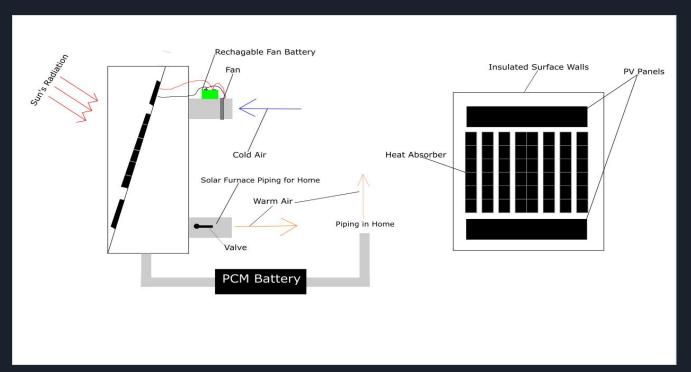
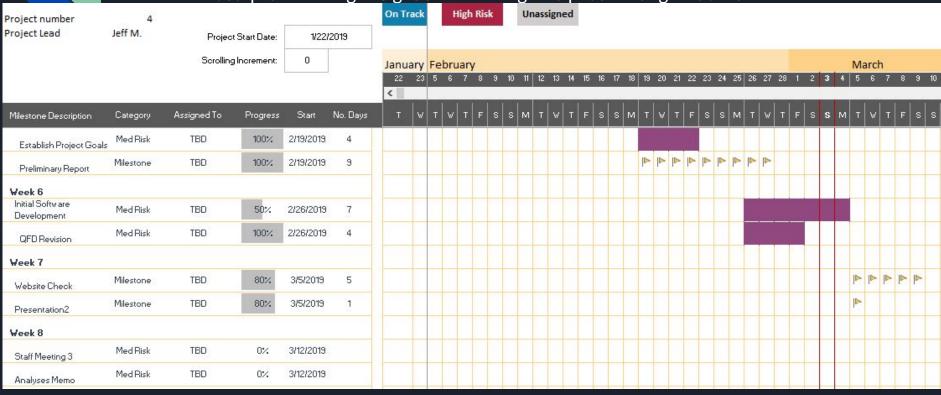


Figure 2: Photovoltaic Solar Furnace W/ Phase Change Material Battery


Concept Evaluation

Concept Variants (Software Models)						
Criterion	Weight	Coal Stove	Coal Stove w/ Insulation	Coal Stove w/ Insulation and PCM	Solar Furnace w/ Insulation	Solar Furnace w/ Insulation and PCM
Safe	20	40/8	30/6	30/6	100/20	100/20
Affordable	25	100/25	90/22.5	70/17.5	80/20	70/17.5
Grid-Independent	20	100/20	100/20	100/20	100/20	100/20
Easy to Regulate Temperature	10	70/7	80/8	80/8	60/6	80/8
Reduces Pollution / Efficient	25	40/10	50/12.5	50/12.5	90/22.5	100/25
Total Weighted Score		70	69	64	88.5	90.5
Relative Rank		3	4	5	2	1

Figure 3: Decision Matrix

Schedule

- The team is currently on schedule
- The next step is modeling designs and deciding on a phase change material

Budget

- Prototypes will likely occur in the second semester of the project
- Anticipated expenses: software modeling and PCM samples
 - Sketchup and Equest
 - Equest is free to use
 - Sketchup costs \$55 per year for students
 - May need PCM samples for prototyping and testing
- Theoretical budget: \$1200 ± \$300 for the overall system

